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Abstract— Automatically tracking cells in large time lapse
datasets is necessary for analyzing cell motion and behavior in 
order to develop new diagnostics and therapeutics. Algorithms 
combining a frame-by-frame segmentation and a model-based 
method have been developed [1][2] to track the cells across a 
sequence of images. The proposed method is based on this 
approach, combining a frame-by-frame method (cell detector and 
arbitrator) and a model-based method using the Active Shape 
Model (ASM). As far as the obtained results are concerned, we 
developed a robust cell tracking algorithm that can track the cells 
across a sequence of cell population images.

Index Terms— image processing, cell tracking, Active Shape 
model 

I. INTRODUCTION 

Tracking of cell populations provides important and 
relevant information on the cell behaviors that can be used for 
a significant amount of applications in genomics, proteomics, 
stem cell biology and tissue engineering. Cell analyses are 
used to develop new diagnostics and therapeutics by analyzing 
their behavior and reaction in different environments. The data 
load of cell image sequences available for analysis is too 
important to be analyzed manually. Automated cell tracking 
algorithms are therefore essential in order to substitute the 
manual marking of cells across a sequence of images. Several 
issues occur in the cell tracking process, such as the mitosis 
(division of a cell into two new cells), the apoptosis (cell 
death), the cells entering and leaving the field of view of the 
camera, the change of cell shapes, the increasing density 
during expansion and the overlapping cells.  

The main traditional methods developed in prior works are 
classified in two principal processes: tracking by detection and 
tracking by model-evolution [1][2]. The tracking by detection 
method operates a frame-by-frame segmentation followed by 
an inter-frame matching whereas the tracking by model 
evolution utilizes a mathematical model that fits the cells and 
that evolves overtime to follow the changes of location and 
shape. Both techniques entail advantage. The first approach 
enables the detection of the mitosis and of the cells entering 
and leaving the field of view whereas the second can deal with 
dull edges. K. Li et al. [1] present a technique that combines 

these advantages. Basic techniques such as thresholding or 
Hough transform [8] have been used for segmentation as well 
as more advanced methods as for instance multifractal [4][6] 
and pattern recognition [7]. A neural algorithm was applied in 
[5] to deal with noisy cells. In addition, a genetic algorithm in 
[6] improves the separation quality of the segmentation. 

We propose an algorithm that combines the tracking by 
detection and tracking by model-evolution approaches. In our 
technique, the tracking by model-evolution uses the ASM to 
match the cells over the sequence. Moreover, an arbitrator and 
a cell detector allow us to deal with the cells entering and 
leaving the field of view and to manage the lost tracks.  

The solution proposed in this paper has revealed good 
results with regards to the efficiency and robustness of the cell 
detection and tracking. 89% of the cells are accurately 
detected by the cell detector and 92.1% of the detected cells 
are tracked between two consecutive frames. This automated 
analysis enhances the cell population movement that can be 
used in order to analyze the behavior of the cells, their 
proliferation or their health. 

II. EXISTING TECHNIQUES FOR CELL TRACKING

Existing cell tracking techniques are essentially classified 
into two approaches: tracking-by-detection and tracking by 
model-evolution, each entailing specific advantages and 
disadvantages. 

The tracking-by-detection is processed in two independent 
stages: a segmentation is processed on all the images using 
thresholding, gradient, Hough transform [8], multifractal [4] 
[6] or pattern recognition [7] in the first stage. 
In the second stage, an inter-frame data association is 
processed in order to match the cells frame after frame. The 
segmentation in each frame can be independent from the other 
frames, making it possible to deal with mitosis and cells 
entering and leaving the field of view. 

The tracking by model-evolution approach consists of 
creating a mathematical appearance or shape model and of 
optimizing its parameters in order to match the cells across the 
sequence. Typical models used for cell tracking are Active 
Contour Models (ACM or “snakes) [9], ASM or Mean-shift 
[10]. Unlike the tracking by detection method, this kind of 
approach does not require an inter-frame object pairing. Thus, 
it allows the cell tracking to deal with dull edges and 
overlapping issues. 
Several researches have been conducted in order to combine 
the advantages of these two methods. K. Li et al. [1] present 
such an approach including modules designed in two levels: a 
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cell detector and a track arbitrator. However, this solution also 
shows limitations regarding the spatiotemporal information 
that is lost by processing in a frame-by-frame manner.  
Neural classifiers have also been applied to deal with noisy 
images, whose results have revealed an efficient learning of 
classification in the case of blurred and non-sharp cell shapes 
[5]. In [6], an optimization of the segmentation is developed 
using a genetic algorithm. More information on the prior work 
may be found in [11]. 

III.  CELL TRACKING ALGORITHM DESCRIPTION 

Our algorithm is composed of two main parts: the training 
program and the tracking program. While the first part is run 
once in order to save the possible shapes of the cells (ASM 
space), the tracking program is run on a new sequence of an 
image, performing the cell detection and tracking. The ASM 
search is the principal element of our approach and is derived 
from the ASM shared code in [3]. The second element that 
supplements the ASM search is an inter-frame matching of the 
cell contour. 

 

A. Training process 

The training process is required in order to save the ASM 
space which represents the possible variations of the cell 
shapes as well as to create an appearance model that defines 
constraints for the ASM fitting optimization. To this end, a 
training set composed of 80 cell contour shapes that have been 
manually marked is created. The main code of the training 
process is available at [12]. 

At the first step, the possible shapes and the mean shape are 
learned and saved. To this end, the rotations and the 
translations are removed from the cell contours (training set). 
The Principal Component Analysis (PCA) is consequently 
used to determine the most important and uncorrelated 
eigenvectors and eigenvalues of the training set. The PCA 
uses the Single Value Decomposition to find the eigenvalues 
and eigenvectors. At last, the shape space is saved. It is 
composed of the eigenvectors and the eigenvalues, both 
describing the possible shapes of the cells, as well as of the 
mean training shape. 

Secondly, an appearance model is created and saved in 
order to optimize the ASM fitting. For each contour, the image 
is therefore sampled on lines perpendicular to it. Fig. 1 shows 
the mean intensity profile of these lines for each contour. We 
can observe the higher intensity at the contour point, which 
lies on the 9th point of the x-Axis for each contour. This 
constant particularity of its perpendicular lines will be used in 
order to find the best fit for the ASM search. This information 
is saved in two ways in order to have two possibilities for the 
ASM fitting optimization. The first method uses the 
Mahalanobis distance. The covariance matrix of the derivative 
of the intensity profile is thus saved to enable this measure. 
The second method uses the PCA on the intensity profile. 
Therefore, the eigenvectors, eigenvalues and mean of the 
intensity profile are saved. This process is applied for different 
scales of the image in order to refine the optimization of the 
ASM fitting. The intensity profile are calculated on the 
original image and on rescaled images. The eigenvectors, 

eigenvalues, mean and covariance matrix are subsequently 
saved for each scale. 

 

B. Cell tracking process 

Once the training process has been run for the appropriate 
type of cell images, the cell tracking system can be processed 
on a new sequence of cell images. Our tracking algorithm is 
essentially composed of a cell detector, a cell tracker and an 
arbitrator. The main code of the cell tracking algorithm is 
available at [13]. 

 
The cell detector locates the cell contours on an image of 

the sequence using the ASM fitting. The initialization of the 
ASM is based on simple binary operations and on a threshold 
applied on the input image, which calculates the potential 
centers of the cells. An example of this initialization may be 
found in [14]. The initial shape of the ASM is the mean shape 
of the training data that is loaded at the beginning of the 
program. As mentioned in the previous part, the ASM fitting 
can be optimized in two ways: by minimizing the Mahalanobis 
distance or by calculating the PCA parameters. The search of 
the best ASM fitting is applied on different scales of the 
image. 
The cell detector is applied to all the cells of the first image of 
the sequence as well as on the cells of the following images 
that have not been tracked (see figure 1).  

In the first case, the cell detector detects all the cells of the 
first image in order to start the tracking. 

In the case of the latter, this is used in order to detect cells 
that have not been tracked from a previous image. Detecting 
cells that have not been followed from a previous frame 
present two advantages. First, we seek to match more cells 
using an inter-frame cell matching based on their positions and 
shapes. Cells whose tracks have been lost from the previous 
image are therefore followed again. Second, the detected cells 
are used in addition to the previously tracked cells for the cell 
tracker initialization on the next frame. Cells entering the field 

 
Fig. 1. Mean intensity pixel profile of the lines perpendicular to the contours 
and passing through the contour points. Each of the 80 curves corresponds to a 
contour that has been manually marked 
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of view or cells which were not previously detected and 
tracked can therefore be managed by the tracking system. 
 

The cell tracker applies the same ASM search as the cell 
detector, yet its shape and position initializations are based on 
the positions and shapes of the cells detected or tracked on the 
previous image. It is run on all the frames of the sequence 
except for the first frame since no previous initialization is 
available (Fig. 2). A cell is considered followed or “tracked” 
between two consecutive frames if the ASM search initialized 
by the previous cell contour fits the cell on the present frame 
again. We assumed and verified that the changes of cell shapes 
between two consecutive frames were slight enough to 
consider that the ASM search would fit the contour of the 
same cell as on the previous image. 

 
The track arbitrator block specifies whether the ASM 

results (cell contours) are consistent or not. The contours 
which are considered as not consistent by the arbitrator are 
removed from the detected or tracked cell contours set. In 
order to do so, different modules analyze the cell contours and 
the image. 

First, those cell contours fitted by the ASM search, which 
partly lie outside the field of view, are removed.  

Based on the gradient values of the image, and on binary 
operations, a mask is created in the second step, aiming to 
describe the areas of the image that cannot contain a cell. 
Those areas indeed possess a low pixel variation and are 
therefore easily extractable. In the arbitrator, the cell contours 
which have a part in this mask area are removed.  

The third module tests the centers of the cells used for the 
initialization of the cell detector. Cell contours containing zero 
or more than one of these centers are removed.  

In the last module, a cell contour that contains the same 
center as another contour is deleted as well. The arbitrator is 
applied after the cell detector and the cell tracker (Fig. 2).  
 

In the end, another module that is not represented on Fig. 2 
for the purpose of a clearer representation is used for newly 
matching the cells that have neither been tracked nor matched 
on two previous frames. Some cell contours from the frame (i-
2) may not be on the frame (i-1). This module simply 
compares these contours to the cell contours on the frame (i). 
The cell tracking is therefore more persistent, as the track of a 
cell that is lost on a frame can be recovered later in the 
sequence. 

 
For each image, the centers of the cells are saved as well as 

numbers specifying which cells have been successfully 
tracked from the previous image. At the end of the analysis of 
the sequence, all the information on the motion of the cells 
that have been detected by the system has been gathered. For a 
clear result, we only show the motion of the cells that have 
been tracked across the whole sequence.  
 

IV. CELL TRACKING RESULTS 

Our program was run on four sequences of 100 frames 
each. The training ASM space was saved once and used for 
the four sequences as the cell images in large time-lapse 
dataset were acquired in a similar manner and context. As 
explained previously, two optimizations are available for the 
ASM fitting. The PCA method has shown much better results 
than the Mahalanobis distance minimization. The following 
results are therefore obtained by using this method. Fig. 3 
shows the ASM search of the cell detector on a single cell. 

 
 
 
 

 
Fig. 2.Structure of the cell tracking algorithm resulting in the cell motion 
information 
 

 
(a)         (b) 

 
Fig. 3. Example of ASM search of the cell detector (a) Initial ASM position 
and shape. The shape is the mean shape of the training data, (b) ASM fitted 
to the cell contour 
 

 
(a)            (b) 

 
Fig. 4.Example of ASM search showing the detection of all the cells on an 
image (a) before the Arbitrator (c) After the Arbitrator 
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The process of the arbitrator module is shown on Fig. 4. We 

see that the cell contours that are considered not consistent as 
explained in the previous part are removed by the arbitrator 
such as those contours lie outside the field of view. 

The cell detector has been tested on twelve cell images 
(three from each sequence). We have manually determined the 
number of cells on each image and analyzed the ASM result 
(cell detector). 

An average of 137.7 cells has been manually found on each 
image. After the arbitrator correction, 94.2% of these cells 
have been matched by the cell detector, 2.72% of these cells 
were wrong, 8.52% of the actual cells were therefore missed 
on average and 4% were “not accurate”. Eventually, 88.6% of 
the cells were precisely detected on average on each frame. A 
shape is considered wrong if it does not fit a cell contour or if 
it fits two cell contours. A shape is termed “not accurate” if we 
clearly see that it does not precisely fit a cell contour (see Fig. 
5). 

 

Tested on twenty cell images (5 from each sequence), the 
percentage of cells tracked by the cell tracker - after correction 
by the arbitrator - was 89.3% without the module that recovers 
the track of the lost cells. It was 90.42% with this module 
dealing with the lost cells from one frame to the other and 
92.1% when using the module, which deals with the lost 
tracks from frame (i-2) to frame (i). The tracked cell 
percentage only represents those cells detected by the ASM 
search; it does not represent the real percentage of cells 
tracked on the image.  
 

Eventually, Fig. 6 shows the track (black marks) of those 
cells that have been followed from the first image until the end 
of the sequences composed of 20, 50 and 100 frames.  
However, more material is saved for analysis as all the 
information about the tracked cells is saved. 
The final result therefore presents a table of vectors that 
contain all the centers of the cells detected by the system for 
each frame as well as a vectors specifying which cells have 
been followed on two consecutive frames. 
 
 Further results and tests may be found in [14]. Among other 
things, the ASM optimization is tested for different number of 
scales. 

V.  ANALYSIS  

A. Robustness and precision of the tracking 

As outlined in the previous part, we developed a robust cell 
tracking algorithm. The detection and tracking of the cells is 
more robust for the cells that present a simple circle shape 
entailing a medium or big size. As we can see on Fig. 6, only a 
few cells are tracked from the first image until the end of the 
sequence. This is due to the fact that some cells leave the field 
of view, others may die (apoptosis) or separate (mitosis) and 
cause a lost track. Some cells may simply not be fitted by the 
ASM because of their shapes, causing further lost tracks. 
Those explain the few track traces on Fig. 6 (48 traces over 20 
frames, 18 traces over 50 frames and 7 traces over 100 
frames). However, more information can be extracted from the 
analysis. The result of the algorithm analysis indeed contains 
all the cell centers that have been detected on all the frames of 
the sequence with a detection percentage of 90.14%. On top of 
that, the cells that are followed on every two consecutive 
frames are further specified. The information of nearly all cell 
movements is therefore saved and available for analysis. 

 
The ASM search shows several difficulties on certain types 

of cell shapes.  
First, while the cell detection and tracking are indeed more 

accurate for cells of medium and large size, small cells are 
harder to fit since the ASM search tends to grow and to fit two 
cells instead of a single one. The reason for this is that most of 
the shapes are bigger and therefore the mean shape is bigger, 
causing the ASM search to match two small cells that together 
present a shape similar to a single cell shape.  

Secondly, the detection of those cells that are not 
surrounded by other cells is also less robust and accurate. 
Indeed, the ASM search fits to the intersection between two 

 
(a)         (b) 

 
(c) 

 
Fig. 5. Example of ASM search of the cell detector (a) good detection, (b) 
imprecise detection, (c) wrong detection 
 

  
(a)             (b) 

 
(c) 

 
Fig. 6. Result of the cell motion over a sequence of  (a) 20 frames, (b) 50 
frames, (c) 100 frames 
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cells more easily than to the intersection between a cell and 
the background of the image. This is explained by the 
optimization of the ASM search that uses the mean intensity 
profile of the lines perpendicular to the contours. Most of the 
contours being surrounded by other cells, the ASM searches 
pixel values that correspond to another cell around the 
contour. These values are not found in the case of cells not 
surrounded by other cells and the ASM fitting is therefore less 
accurate. 

However, in both of these cases, the cell detection is wrong 
and is therefore removed by the arbitrator as explained in part 
III. Hence, these fitting errors cause a non-detection of the
cells instead of an imprecise or wrong detection. 

Furthermore, since we cannot determine the exact position 
and shape of those cells that are not entirely on the image, they 
are also removed from the cell tracking in the arbitrator 
process in order to optimize the precision of the cell tracking 
at the cost of fewer cell detections. 

The final results have shown a precise detection of 90.14% 
of the cells by the cell detector and have further revealed that 
92.1% of the detected cells are tracked between two 
consecutive frames by the cell tracker. It should be noted that 
the percentage of cells that are not detected or not tracked 
represents mostly the same cells on different images, which 
signifies that most of the cells are tracked across the sequence 
for a long duration and enhance the cell population motion and 
behaviour. 

B. Further development of the system 

With regards to the mitosis detection, the segmentation is 
not precise enough to implement a robust system. Indeed, we 
need exact cell shape detection in order to detect the cell 
changes that occur with the mitosis and especially a good 
detection of small cell shapes is required as daughter cells are 
smaller than others. Explanation of the mitosis phenomena 
may be found in [11]. 

We have also not implemented a prediction filter based on 
the Optical Flow as the cell motion was minimal and 
unpredictable between two images. Explanations of the 
Optical Flow may be found in [11]. The tracking issues were 
not due to the fact that a cell was not followed from an image 
to the following, but to the fact that the ASM search could not 
fit the cell shape. In this context, it was not helpful to use a 
prediction filter. 

VI. CONCLUSION

We developed an automated algorithm capable of tracking 
hundreds of cells in large time-lapse image sequences of an 
increasing cell population. The system incorporated an ASM 
based process as well as a frame-by-frame cell detection and 
matching. The system achieved a detection of 90.14% of the 
actual cells on the frame and a tracking of 92.1% of the 
detected cells from one frame to the other. The results 
obtained provide useful information on the cell movement and 

enable studying the cell population behavior. Further 
improvement on robustness, processing speed and mitosis 
detection may be developed based on this cell tracking 
algorithm. 
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